Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2315018121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625940

RESUMO

Heterotrimeric G proteins can be regulated by posttranslational modifications, including ubiquitylation. KCTD5, a pentameric substrate receptor protein consisting of an N-terminal BTB domain and a C-terminal domain, engages CUL3 to form the central scaffold of a cullin-RING E3 ligase complex (CRL3KCTD5) that ubiquitylates Gßγ and reduces Gßγ protein levels in cells. The cryo-EM structure of a 5:5:5 KCTD5/CUL3NTD/Gß1γ2 assembly reveals a highly dynamic complex with rotations of over 60° between the KCTD5BTB/CUL3NTD and KCTD5CTD/Gßγ moieties of the structure. CRL3KCTD5 engages the E3 ligase ARIH1 to ubiquitylate Gßγ in an E3-E3 superassembly, and extension of the structure to include full-length CUL3 with RBX1 and an ARIH1~ubiquitin conjugate reveals that some conformational states position the ARIH1~ubiquitin thioester bond to within 10 Å of lysine-23 of Gß and likely represent priming complexes. Most previously described CRL/substrate structures have consisted of monovalent complexes and have involved flexible peptide substrates. The structure of the KCTD5/CUL3NTD/Gßγ complex shows that the oligomerization of a substrate receptor can generate a polyvalent E3 ligase complex and that the internal dynamics of the substrate receptor can position a structured target for ubiquitylation in a CRL3 complex.


Assuntos
Proteínas de Transporte , Ubiquitina-Proteína Ligases , Ligação Proteica , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte/metabolismo , Ubiquitina/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo
2.
Biochemistry ; 63(7): 880-892, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501608

RESUMO

Ras-related nuclear protein (Ran) is a member of the Ras superfamily of small guanosine triphosphatases (GTPases) and a regulator of multiple cellular processes. In healthy cells, the GTP-bound form of Ran is concentrated at chromatin, creating a Ran•GTP gradient that provides the driving force for nucleocytoplasmic transport, mitotic spindle assembly, and nuclear envelope formation. The Ran•GTP gradient is maintained by the regulator of chromatin condensation 1 (RCC1), a guanine nucleotide exchange factor that accelerates GDP/GTP exchange in Ran. RCC1 interacts with nucleosomes, which are the fundamental repeating units of eukaryotic chromatin. Here, we present a cryo-EM analysis of a trimeric complex composed of the nucleosome core particle (NCP), RCC1, and Ran. While the contacts between RCC1 and Ran in the complex are preserved compared with a previously determined structure of RCC1-Ran, our study reveals that RCC1 and Ran interact dynamically with the NCP and undergo rocking motions on the nucleosome surface. Furthermore, the switch 1 region of Ran, which plays an important role in mediating conformational changes associated with the substitution of GDP and GTP nucleotides in Ras family members, appears to undergo disorder-order transitions and forms transient contacts with the C-terminal helix of histone H2B. Nucleotide exchange assays performed in the presence and absence of NCPs are not consistent with an active role for nucleosomes in nucleotide exchange, at least in vitro. Instead, the nucleosome stabilizes RCC1 and serves as a hub that concentrates RCC1 and Ran to promote efficient Ran•GDP to Ran•GTP conversion.


Assuntos
Cromatina , Nucleossomos , Proteína ran de Ligação ao GTP , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , Guanosina Trifosfato/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/metabolismo , Nucleotídeos/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Humanos , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo
3.
Mol Cell ; 84(3): 429-446.e17, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215753

RESUMO

Nucleosomes, the basic structural units of chromatin, hinder recruitment and activity of various DNA repair proteins, necessitating modifications that enhance DNA accessibility. Poly(ADP-ribosyl)ation (PARylation) of proteins near damage sites is an essential initiation step in several DNA-repair pathways; however, its effects on nucleosome structural dynamics and organization are unclear. Using NMR, cryoelectron microscopy (cryo-EM), and biochemical assays, we show that PARylation enhances motions of the histone H3 tail and DNA, leaving the configuration of the core intact while also stimulating nuclease digestion and ligation of nicked nucleosomal DNA by LIG3. PARylation disrupted interactions between nucleosomes, preventing self-association. Addition of LIG3 and XRCC1 to PARylated nucleosomes generated condensates that selectively partition DNA repair-associated proteins in a PAR- and phosphorylation-dependent manner in vitro. Our results establish that PARylation influences nucleosomes across different length scales, extending from the atom-level motions of histone tails to the mesoscale formation of condensates with selective compositions.


Assuntos
Nucleossomos , Poli ADP Ribosilação , Nucleossomos/genética , Poli ADP Ribosilação/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Microscopia Crioeletrônica , Condensados Biomoleculares , Reparo do DNA , Histonas/genética , Histonas/metabolismo , DNA/genética , DNA/metabolismo , Dano ao DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo
4.
J Biol Chem ; 300(1): 105483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992805

RESUMO

Oxidative phosphorylation, the combined activities of the electron transport chain (ETC) and ATP synthase, has emerged as a valuable target for antibiotics to treat infection with Mycobacterium tuberculosis and related pathogens. In oxidative phosphorylation, the ETC establishes a transmembrane electrochemical proton gradient that powers ATP synthesis. Monitoring oxidative phosphorylation with luciferase-based detection of ATP synthesis or measurement of oxygen consumption can be technically challenging and expensive. These limitations reduce the utility of these methods for characterization of mycobacterial oxidative phosphorylation inhibitors. Here, we show that fluorescence-based measurement of acidification of inverted membrane vesicles (IMVs) can detect and distinguish between inhibition of the ETC, inhibition of ATP synthase, and nonspecific membrane uncoupling. In this assay, IMVs from Mycobacterium smegmatis are acidified either through the activity of the ETC or ATP synthase, the latter modified genetically to allow it to serve as an ATP-driven proton pump. Acidification is monitored by fluorescence from 9-amino-6-chloro-2-methoxyacridine, which accumulates and quenches in acidified IMVs. Nonspecific membrane uncouplers prevent both succinate- and ATP-driven IMV acidification. In contrast, the ETC Complex III2IV2 inhibitor telacebec (Q203) prevents succinate-driven acidification but not ATP-driven acidification, and the ATP synthase inhibitor bedaquiline prevents ATP-driven acidification but not succinate-driven acidification. We use the assay to show that, as proposed previously, lansoprazole sulfide is an inhibitor of Complex III2IV2, whereas thioridazine uncouples the mycobacterial membrane nonspecifically. Overall, the assay is simple, low cost, and scalable, which will make it useful for identifying and characterizing new mycobacterial oxidative phosphorylation inhibitors.


Assuntos
Antibacterianos , Descoberta de Drogas , Mycobacterium tuberculosis , Fosforilação Oxidativa , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Descoberta de Drogas/métodos
5.
Proc Natl Acad Sci U S A ; 120(40): e2307093120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37751552

RESUMO

Energy conversion by electron transport chains occurs through the sequential transfer of electrons between protein complexes and intermediate electron carriers, creating the proton motive force that enables ATP synthesis and membrane transport. These protein complexes can also form higher order assemblies known as respiratory supercomplexes (SCs). The electron transport chain of the opportunistic pathogen Pseudomonas aeruginosa is closely linked with its ability to invade host tissue, tolerate harsh conditions, and resist antibiotics but is poorly characterized. Here, we determine the structure of a P. aeruginosa SC that forms between the quinol:cytochrome c oxidoreductase (cytochrome bc1) and one of the organism's terminal oxidases, cytochrome cbb3, which is found only in some bacteria. Remarkably, the SC structure also includes two intermediate electron carriers: a diheme cytochrome c4 and a single heme cytochrome c5. Together, these proteins allow electron transfer from ubiquinol in cytochrome bc1 to oxygen in cytochrome cbb3. We also present evidence that different isoforms of cytochrome cbb3 can participate in formation of this SC without changing the overall SC architecture. Incorporating these different subunit isoforms into the SC would allow the bacterium to adapt to different environmental conditions. Bioinformatic analysis focusing on structural motifs in the SC suggests that cytochrome bc1-cbb3 SCs also exist in other bacterial pathogens.


Assuntos
Citocromos c , Pseudomonas aeruginosa , Transporte de Elétrons , Transporte Biológico , Antibacterianos
6.
Curr Opin Struct Biol ; 80: 102592, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272327

RESUMO

Vacuolar-type ATPases (V-ATPases) are responsible for the acidification of intracellular compartments in almost all eukaryotic cells, while in some specialized cells they acidify the extracellular environment. As ubiquitous proton pumps, these large membrane-embedded enzymes are involved in many fundamental cellular processes that require tight control of pH. Consequently, V-ATPase malfunction or aberrant activity has been linked to numerous diseases. In the past ten years, electron cryomicroscopy (cryoEM) of yeast V-ATPases has revealed the architecture and rotary catalytic mechanism of these macromolecular machines. More recently, studies have revealed the structures of V-ATPases in animals and plants, uncovered aspects of how V-ATPases are assembled and regulated by reversible dissociation, and shown how V-ATPase activity can be modulated by proteins and small molecule inhibitors. In this review, we highlight these recent developments.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Animais , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Microscopia Crioeletrônica , Membrana Celular/metabolismo , Células Eucarióticas/metabolismo
7.
ACS Omega ; 8(21): 19081-19098, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273644

RESUMO

Q203 (telacebec) is an imidazopyridine amide (IPA) targeting the respiratory CIII2CIV2 supercomplex of the mycobacterial electron transport chain (ETC). Aiming for a better understanding of the molecular mechanism of action of IPA, 27 analogues were prepared through a seven-step synthetic scheme. Oxygen consumption assay was designed to test the inhibition of purified Mycobacterium smegmatis CIII2CIV2 by these compounds. The assay results generally supported structure-activity relationship information obtained from the structure of M. smegmatis CIII2CIV2 bound to Q203. The IC50 of Q203 and compound 27 was 99 ± 32 and 441 ± 138 nM, respectively. All IPAs including Q203 showed no inhibition of mitochondrial ETC, proving their selectivity against mycobacteria. In vitro Mycobacterium tuberculosis growth inhibition and M. smegmatis CIII2CIV2 binding did not correlate perfectly. These observations suggest that further investigation into the mechanisms of resistance in different mycobacterial species is needed to understand the lack of the correlation pattern between CIII2CIV2 inhibition and cellular activity.

8.
EMBO J ; 42(15): e113687, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37377118

RESUMO

Mycobacteria, such as Mycobacterium tuberculosis, depend on the activity of adenosine triphosphate (ATP) synthase for growth. The diarylquinoline bedaquiline (BDQ), a mycobacterial ATP synthase inhibitor, is an important medication for treatment of drug-resistant tuberculosis but suffers from off-target effects and is susceptible to resistance mutations. Consequently, both new and improved mycobacterial ATP synthase inhibitors are needed. We used electron cryomicroscopy and biochemical assays to study the interaction of Mycobacterium smegmatis ATP synthase with the second generation diarylquinoline TBAJ-876 and the squaramide inhibitor SQ31f. The aryl groups of TBAJ-876 improve binding compared with BDQ, while SQ31f, which blocks ATP synthesis ~10 times more potently than ATP hydrolysis, binds a previously unknown site in the enzyme's proton-conducting channel. Remarkably, BDQ, TBAJ-876, and SQ31f all induce similar conformational changes in ATP synthase, suggesting that the resulting conformation is particularly suited for drug binding. Further, high concentrations of the diarylquinolines uncouple the transmembrane proton motive force while for SQ31f they do not, which may explain why high concentrations of diarylquinolines, but not SQ31f, have been reported to kill mycobacteria.


Assuntos
Diarilquinolinas , Mycobacterium tuberculosis , Diarilquinolinas/farmacologia , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/metabolismo , Trifosfato de Adenosina/metabolismo , Mycobacterium tuberculosis/genética
9.
Sci Transl Med ; 15(697): eadf4549, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224226

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has been responsible for a global pandemic. Monoclonal antibodies (mAbs) have been used as antiviral therapeutics; however, these therapeutics have been limited in efficacy by viral sequence variability in emerging variants of concern (VOCs) and in deployment by the need for high doses. In this study, we leveraged the multi-specific, multi-affinity antibody (Multabody, MB) platform, derived from the human apoferritin protomer, to enable the multimerization of antibody fragments. MBs were shown to be highly potent, neutralizing SARS-CoV-2 at lower concentrations than their corresponding mAb counterparts. In mice infected with SARS-CoV-2, a tri-specific MB targeting three regions within the SARS-CoV-2 receptor binding domain was protective at a 30-fold lower dose than a cocktail of the corresponding mAbs. Furthermore, we showed in vitro that mono-specific MBs potently neutralize SARS-CoV-2 VOCs by leveraging augmented avidity, even when corresponding mAbs lose their ability to neutralize potently, and that tri-specific MBs expanded the neutralization breadth beyond SARS-CoV-2 to other sarbecoviruses. Our work demonstrates how avidity and multi-specificity combined can be leveraged to confer protection and resilience against viral diversity that exceeds that of traditional monoclonal antibody therapies.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Animais , Camundongos , SARS-CoV-2 , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antivirais
10.
J Biol Chem ; 299(6): 104718, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062417

RESUMO

Loss-of-function variants of vacuolar protein sorting proteins VPS33B and VPS16B (VIPAS39) are causative for arthrogryposis, renal dysfunction, and cholestasis syndrome, where early lethality of patients indicates that VPS33B and VPS16B play essential cellular roles. VPS33B is a member of the Sec1-Munc18 protein family and thought to facilitate vesicular fusion via interaction with soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, like its paralog VPS33A in the homotypic fusion and vacuole sorting complex. VPS33B and VPS16B are known to associate, but little is known about the composition, structure, or function of the VPS33B-VPS16B complex. We show here that human VPS33B-VPS16B is a high molecular weight complex, which we expressed in yeast to perform structural, composition, and stability analysis. Circular dichroism data indicate VPS33B-VPS16B has a well-folded α-helical secondary structure, and size-exclusion chromatography-multiangle light scattering revealed a molecular weight of ∼315 kDa. Quantitative immunoblotting indicated a VPS33B:VPS16B ratio of 2:3. Expression of arthrogryposis, renal dysfunction, and cholestasis syndrome-causing VPS33B missense variants showed L30P disrupts complex formation but not S243F or H344D. Truncated VPS16B (amino acids 143 to 316) was sufficient to form a complex with VPS33B. Small-angle X-ray scattering and negative-staining EM revealed a two-lobed shape for VPS33B-VPS16B. Avidin tagging indicated that each lobe contains a VPS33B molecule, and they are oriented in opposite directions. We propose a structure for VPS33B-VPS16B that allows the VPS33B at each end to interact with separate SNARE bundles and/or SNAREpins, plus associated membrane components. These observations reveal the only known potentially bidirectional Sec1-Munc18 protein complex.


Assuntos
Proteínas Munc18 , Insuficiência Renal , Humanos , Proteínas SNARE/genética , Síndrome , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(13): e2214949120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36952383

RESUMO

Oxidative phosphorylation, the combined activity of the electron transport chain (ETC) and adenosine triphosphate synthase, has emerged as a valuable target for the treatment of infection by Mycobacterium tuberculosis and other mycobacteria. The mycobacterial ETC is highly branched with multiple dehydrogenases transferring electrons to a membrane-bound pool of menaquinone and multiple oxidases transferring electrons from the pool. The proton-pumping type I nicotinamide adenine dinucleotide (NADH) dehydrogenase (Complex I) is found in low abundance in the plasma membranes of mycobacteria in typical in vitro culture conditions and is often considered dispensable. We found that growth of Mycobacterium smegmatis in carbon-limited conditions greatly increased the abundance of Complex I and allowed isolation of a rotenone-sensitive preparation of the enzyme. Determination of the structure of the complex by cryoEM revealed the "orphan" two-component response regulator protein MSMEG_2064 as a subunit of the assembly. MSMEG_2064 in the complex occupies a site similar to the proposed redox-sensing subunit NDUFA9 in eukaryotic Complex I. An apparent purine nucleoside triphosphate within the NuoG subunit resembles the GTP-derived molybdenum cofactor in homologous formate dehydrogenase enzymes. The membrane region of the complex binds acyl phosphatidylinositol dimannoside, a characteristic three-tailed lipid from the mycobacterial membrane. The structure also shows menaquinone, which is preferentially used over ubiquinone by gram-positive bacteria, in two different positions along the quinone channel, comparable to ubiquinone in other structures and suggesting a conserved quinone binding mechanism.


Assuntos
Complexo I de Transporte de Elétrons , Ubiquinona , Complexo I de Transporte de Elétrons/metabolismo , Ubiquinona/metabolismo , Vitamina K 2 , Quinonas/metabolismo , Mycobacterium smegmatis/metabolismo
12.
Chemistry ; 29(29): e202300262, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36867738

RESUMO

Cruentaren A is a natural product that exhibits potent antiproliferative activity against various cancer cell lines, yet its binding site within ATP synthase remained unknown, thus limiting the development of improved analogues as anticancer agents. Herein, we report the cryogenic electron microscopy (cryoEM) structure of cruentaren A bound to ATP synthase, which allowed the design of new inhibitors through semisynthetic modification. Examples of cruentaren A derivatives include a trans-alkene isomer, which was found to exhibit similar activity to cruentaren A against three cancer cell lines as well as several other analogues that retained potent inhibitory activity. Together, these studies provide a foundation for the generation of cruentaren A derivatives as potential therapeutics for the treatment of cancer.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Estrutura Molecular , Microscopia Crioeletrônica , Linhagem Celular , Antineoplásicos/farmacologia , Antineoplásicos/química , Trifosfato de Adenosina , Relação Estrutura-Atividade
13.
Proc Natl Acad Sci U S A ; 120(6): e2217181120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36724250

RESUMO

Vacuolar-type adenosine triphosphatases (V-ATPases) are rotary proton pumps that acidify specific intracellular compartments in almost all eukaryotic cells. These multi-subunit enzymes consist of a soluble catalytic V1 region and a membrane-embedded proton-translocating VO region. VO is assembled in the endoplasmic reticulum (ER) membrane, and V1 is assembled in the cytosol. However, V1 binds VO only after VO is transported to the Golgi membrane, thereby preventing acidification of the ER. We isolated VO complexes and subcomplexes from Saccharomyces cerevisiae bound to V-ATPase assembly factors Vma12p, Vma21p, and Vma22p. Electron cryomicroscopy shows how the Vma12-22p complex recruits subunits a, e, and f to the rotor ring of VO while blocking premature binding of V1. Vma21p, which contains an ER-retrieval motif, binds the VO:Vma12-22p complex, "mature" VO, and a complex that appears to contain a ring of loosely packed rotor subunits and the proteins YAR027W and YAR028W. The structures suggest that Vma21p binds assembly intermediates that contain a rotor ring and that activation of proton pumping following assembly of V1 with VO removes Vma21p, allowing V-ATPase to remain in the Golgi. Together, these structures show how Vma12-22p and Vma21p function in V-ATPase assembly and quality control, ensuring the enzyme acidifies only its intended cellular targets.


Assuntos
Proteínas de Saccharomyces cerevisiae , ATPases Vacuolares Próton-Translocadoras , Proteínas de Saccharomyces cerevisiae/metabolismo , Prótons , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
14.
Biochem Soc Trans ; 51(1): 183-193, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36661265

RESUMO

The bacterial genus Mycobacterium comprises numerous pathogenic species including M. tuberculosis, the causative agent of the disease tuberculosis. Mycobacteria are obligate aerobes that generate cellular energy through oxidative phosphorylation, the combined activities of the electron transport chain (ETC) and adenosine triphosphate (ATP) synthase. This reliance on oxidative phosphorylation makes the process an attractive target for development of drugs to treat mycobacterial infections. However, targeting the ETC is complicated by the highly branched nature of the chain in mycobacteria and the ability of mycobacteria to alter the expression of ETC constituents in different growth conditions. Here, we review recent characterization of the branched and flexible ETC in mycobacteria, with an emphasis on the structural characterization of mycobacterial ETC complexes by electron cryomicroscopy.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Microscopia Crioeletrônica , Transporte de Elétrons , Fosforilação Oxidativa
15.
PLoS Pathog ; 18(11): e1010999, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441829

RESUMO

Antibodies targeting the human malaria parasite Plasmodium falciparum circumsporozoite protein (PfCSP) can prevent infection and disease. PfCSP contains multiple central repeating NANP motifs; some of the most potent anti-infective antibodies against malaria bind to these repeats. Multiple antibodies can bind the repeating epitopes concurrently by engaging into homotypic Fab-Fab interactions, which results in the ordering of the otherwise largely disordered central repeat into a spiral. Here, we characterize IGHV3-33/IGKV1-5-encoded monoclonal antibody (mAb) 850 elicited by immunization of transgenic mice with human immunoglobulin loci. mAb 850 binds repeating NANP motifs with picomolar affinity, potently inhibits Plasmodium falciparum (Pf) in vitro and, when passively administered in a mouse challenge model, reduces liver burden to a similar extent as some of the most potent anti-PfCSP mAbs yet described. Like other IGHV3-33/IGKV1-5-encoded anti-NANP antibodies, mAb 850 primarily utilizes its HCDR3 and germline-encoded aromatic residues to recognize its core NANP motif. Biophysical and cryo-electron microscopy analyses reveal that up to 19 copies of Fab 850 can bind the PfCSP repeat simultaneously, and extensive homotypic interactions are observed between densely-packed PfCSP-bound Fabs to indirectly improve affinity to the antigen. Together, our study expands on the molecular understanding of repeat-induced homotypic interactions in the B cell response against PfCSP for potently protective mAbs against Pf infection.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Camundongos , Animais , Plasmodium falciparum , Microscopia Crioeletrônica , Malária Falciparum/parasitologia , Proteínas de Protozoários , Malária/parasitologia , Camundongos Transgênicos , Anticorpos Monoclonais , Anticorpos Antiprotozoários
16.
Structure ; 30(10): 1403-1410.e4, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36041457

RESUMO

We used the Legionella pneumophila effector SidK to affinity purify the endogenous vacuolar-type ATPases (V-ATPases) from lemon fruit. The preparation was sufficient for cryoelectron microscopy, allowing structure determination of the enzyme in two rotational states. The structure defines the ATP:H+ ratio of the enzyme, demonstrating that it can establish a maximum ΔpH of ∼3, which is insufficient to maintain the low pH observed in the vacuoles of juice sac cells in lemons and other citrus fruit. Compared with yeast and mammalian enzymes, the membrane region of the plant V-ATPase lacks subunit f and possesses an unusual configuration of transmembrane α helices. Subunit H, which inhibits ATP hydrolysis in the isolated catalytic region of V-ATPase, adopts two different conformations in the intact complex, hinting at a role in modulating activity in the intact enzyme.


Assuntos
Citrus , ATPases Vacuolares Próton-Translocadoras , Trifosfato de Adenosina , Animais , Microscopia Crioeletrônica , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(30): e2205228119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858451

RESUMO

The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome c to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.


Assuntos
Diosgenina , Complexo IV da Cadeia de Transporte de Elétrons , Esteroides , Animais , Sítios de Ligação , Domínio Catalítico/efeitos dos fármacos , Bovinos , Diosgenina/farmacologia , Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/química , Oxirredução , Oxigênio/metabolismo , Conformação Proteica , Prótons , Esteroides/química , Esteroides/farmacologia , Esteróis
18.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35794005

RESUMO

V-ATPases are rotary proton pumps that serve as signaling hubs with numerous protein binding partners. CryoEM with exhaustive focused classification allowed detection of endogenous proteins associated with porcine kidney V-ATPase. An extra C subunit was found in ∼3% of complexes, whereas ∼1.6% of complexes bound mEAK-7, a protein with proposed roles in dauer formation in nematodes and mTOR signaling in mammals. High-resolution cryoEM of porcine kidney V-ATPase with recombinant mEAK-7 showed that mEAK-7's TLDc domain interacts with V-ATPase's stator, whereas its C-terminal α helix binds V-ATPase's rotor. This crosslink would be expected to inhibit rotary catalysis. However, unlike the yeast TLDc protein Oxr1p, exogenous mEAK-7 does not inhibit V-ATPase and mEAK-7 overexpression in cells does not alter lysosomal or phagosomal pH. Instead, cryoEM suggests that the mEAK-7:V-ATPase interaction is disrupted by ATP-induced rotation of the rotor. Comparison of Oxr1p and mEAK-7 binding explains this difference. These results show that V-ATPase binding by TLDc domain proteins can lead to effects ranging from strong inhibition to formation of labile interactions that are sensitive to the enzyme's activity.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Animais , Microscopia Crioeletrônica , Mamíferos/metabolismo , Ligação Proteica , Subunidades Proteicas/química , Suínos , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo
19.
Nat Biotechnol ; 40(12): 1834-1844, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35879364

RESUMO

Mutations in Ras family proteins are implicated in 33% of human cancers, but direct pharmacological inhibition of Ras mutants remains challenging. As an alternative to direct inhibition, we screened for sensitivities in Ras-mutant cells and discovered 249C as a Ras-mutant selective cytotoxic agent with nanomolar potency against a spectrum of Ras-mutant cancers. 249C binds to vacuolar (V)-ATPase with nanomolar affinity and inhibits its activity, preventing lysosomal acidification and inhibiting autophagy and macropinocytosis pathways that several Ras-driven cancers rely on for survival. Unexpectedly, potency of 249C varies with the identity of the Ras driver mutation, with the highest potency for KRASG13D and G12V both in vitro and in vivo, highlighting a mutant-specific dependence on macropinocytosis and lysosomal pH. Indeed, 249C potently inhibits tumor growth without adverse side effects in mouse xenografts of KRAS-driven lung and colon cancers. A comparison of isogenic SW48 xenografts with different KRAS mutations confirmed that KRASG13D/+ (followed by G12V/+) mutations are especially sensitive to 249C treatment. These data establish proof-of-concept for targeting V-ATPase in cancers driven by specific KRAS mutations such as KRASG13D and G12V.


Assuntos
Antineoplásicos , Neoplasias , ATPases Vacuolares Próton-Translocadoras , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas ras/genética , Proteínas ras/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mutação/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética
20.
Front Microbiol ; 13: 864006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783400

RESUMO

During respiration, adenosine triphosphate (ATP) synthases harness the electrochemical proton motive force (PMF) generated by the electron transport chain (ETC) to synthesize ATP. These macromolecular machines operate by a remarkable rotary catalytic mechanism that couples transmembrane proton translocation to rotation of a rotor subcomplex, and rotation to ATP synthesis. Initially, x-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cross-linking were the only ways to gain insights into the three-dimensional (3D) structures of ATP synthases and, in particular, provided ground-breaking insights into the soluble parts of the complex that explained the catalytic mechanism by which rotation is coupled to ATP synthesis. In contrast, early electron microscopy was limited to studying the overall shape of the assembly. However, advances in electron cryomicroscopy (cryoEM) have allowed determination of high-resolution structures, including the membrane regions of ATP synthases. These studies revealed the high-resolution structures of the remaining ATP synthase subunits and showed how these subunits work together in the intact macromolecular machine. CryoEM continues to uncover the diversity of ATP synthase structures across species and has begun to show how ATP synthases can be targeted by therapies to treat human diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...